
Chapter Two

Elements of Linear Algebra

Previously, in chapter one, we have considered single first order differential equations
involving a single unknown function. In the next chapter we will begin to consider systems of
such equations involving several unknown functions and for these problems, a modicum of
linear algebra is required. We recall first definitions for several terms and the notations we
will use for them. Then we will proceed to only those aspects of linear algebra that will be
needed in order to consider systems of linear differential equations. Several theorems are
presented along with their proofs but the proofs can be avoided on first reading.

1. Notation and terminology
Scalars
The term scalar refers to the usual real numbers, and these will be denoted by: x, �, . . .

Vectors
The term "vector" refers to an array of numbers. In particular, an n-vector is an array
consisting of n rows and one column. For example,

x� �

x1

�

xn

This is called a "column vector" and we denote it by x�.
An array of one row and n columns is called a row vector, for example :

x�� � �x1,� , xn�.

When a column vector, x�, is written as a row vector, we use the notation x�� for the row
vector.

Matrices
An m by n matrix is an array consisting of m(rows) and n(columns). For example,

A �

a11 � a1n

� �

am1 � amn

denotes an m by n matrix. Often we will write this more compactly as A � �aij �. In particular,
vectors are a special case of matrices, for example,the column vector, x� is an n by 1 matrix
and the corresponding row vector, x��, is a 1 by n matrix.

The matrix obtained by writing the rows of A as columns is called the transpose of A
and is denoted by A� � �aji �. This explains the notation x�� when the column vector x� is
written as a row vector.

If A has the same number of rows as it has columns, it is called a square matrix.
Square matrices with the special property that A � A� are called symmetric matrices. We
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will see later that such matrices occur frequently in applications and have special properties.

Products
There are various products that can be defined between the quantities defined above.

1) scalar multiplication- this refers to the product of a scalar, �, with a vector, x�, or
matrix, A:

�x� �

�x1

�

�xn

, �A �

�a11 � �a1n

� �

�am1 � �amn

2) inner product- this refers to the product of two vectors x� and z� of the same type
(number of components) and the result is a scalar. We use the notation x� � z� or x��z� for the
inner product (also called the "dot product" in some texts). It is defined as follows,

x� � z� � x��z� � x1z1 � � � xnzn

Note that

x� � x� � x1
2 � � � xn

2 � ||x�||2

� square of the length of x�

and x� � z� � 0 if and only if x� and z� are orthogonal (perpendicular to one another).

3) matrix times a vector- This refers to the product of a matrix A times a vector x�. This
product is defined if and only if the number of columns of the matrix A equals the number of
rows in the column vector x�. The product A x� is defined as follows

A x� �

a11x1 � � � a1nxn

�

am1x1 � � � amnxn

.

It will be useful later to write this product in various ways. For example, the product A x� can
be expressed in terms of the rows of A,

A x� �

R�1 � x�

�

R�m � x�

Here R� jdenotes the j � th row of the m � n matrix A, and R� j � x� denotes the inner product of
this row with the vector x�. We can also express A x� in terms of the columns of A
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A x� �

a11x1 � � � a1nxn

�

am1x1 � � � amnxn

�

a11x1

�

am1x1

� � �

a1nxn

�

amnxn

� x1C� 1 � x2C� 2 � � � xnC� n

where C� k denotes the k-th column of the matrix A and the product A x� can be expressed as
the sum x1C� 1 � x2C� 2 � � � xnC� n, where xk denotes the k-th entry of the vector x�.

4) matrix times a matrix- This refers to the product of the m by n matrix A times the n
by p matrix B. The product is defined if and only if the number of columns of A is equal to
the number of rows of B. If this is the case then the �j, k� � entry in AB is equal to the inner
product of R� j, the j-th row of the m�n matrix A with C� k, the k-th column of the n by p
matrix B; i.e.,

A B �

R�1 � C� 1 � R�1 � C� p

� �

R�m � C� 1 R�m � C� p

Clearly, the product AB is not defined unless the number of columns of A equals the
number of rows of B.

We recall now the meaning of a few terms regarding matrices:
� diagonal matrix all terms djk with j � k are zero

D �

d11 � 0

� 	 �

0 � dnn

� identity matrix I � diagonal matrix with djj � 1 all j. Note that I A � A I � A for
all square matrices A.

� transpose if A � �aij� then A� � �aji� and �AB�� � B�A�

� symmetric matrix A is symmetric if A � A�

� skew symmetric matrix A is skew-symmetric if A � �A�

In order to consider problems involving systems of linear ODE’s it will be necessary to
collect a number of concepts from the topic of linear algebra. These concepts can be
organized into two groups, those having to do with the so-called "first problem of linear
algebra" and those relating to what we will call "the second problem of linear algebra".

2. The First Problem of Linear Algebra: Ax� � b�
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Let A denote an n by n matrix, and let b� denote an arbitrary vector in Rn. The first
fundamental problem of linear algebra is the problem of finding a vector x� in Rn such that
Ax� � b� where A and b� are given. That is, to find an x� which solves a system of n linear
algebraic equations in n unknowns.

There are two things we want to know about this problem: first, does it have a solution,
and second, is the solution unique? Consider for example, the following systems of two
equations for two unknowns:

1� x1 � x2 � 1

x1 � x2 � 2

2� x1 � x2 � 1

2x1 � 2x2 � 2

3� x1 � x2 � 1

x1 � x2 � 1

It should be evident that no solution exists for example 1 since the two equations are
contradictory. Likewise, it should be clear that solutions exist for example 2 but the solution
is not unique since the two equations are redundant. Finally, in example 3 there is a unique
solution. When the number of equations is small, the questions of existence and
uniqueness are easily answered and the results understood. We want to be able to deal
equally well with systems involving large numbers of equations and unknowns and this will
require a certain amount of mathematical machinery which we will now develop. The proofs
of the main results here are included only for the sake of completeness and can be omitted
on first reading.

2.1 Subspaces
In order to answer the questions of existence and uniqueness, it will be helpful to define

the notion of a subspace of Rn and further define two particular subspaces associated with
the matrix A. A collection of vectors M in Rn is a subspace if M is closed under the operation
of forming linear combinations. That means simply that if v� and u� are any two vectors in the
collection M, then for all scalars, C1 and C2, the combination, C1 v� � C2 u� must also belong
to M. If this is the case, then M is closed under the operation of forming linear combinations
and we say M is a subspace of Rn.

Examples of subspaces
1. The set of all vectors v� in Rn whose length is 1 is an example of a set that is not a

subspace. For example u� � �0, 1� and v� � �1, 0� are two vectors in R2 whose
length is 1 but u� � v� � �1, 1� does not have length 1.

2. The set M of all vectors v� in R3 whose first entry is 0 is a subspace. For example
u� � �0, 1, 1�, and v� � �0, 1,�1� are in M and for any constants � and �,
�u� � �v� � �0,� � �,� � �� is also in M.

3. Another example of a set that is a subspace is the set M � span X�1, X�2,� , X�p .
This is the set consisting of all possible linear combinations of the vectors
X�1, X�2,� , X�p. Clearly M is closed under the operation of forming linear
combinations.

Two additional examples of subspaces are the following:

4



4 NA � the null space of A � This is the set of all vectors x� � Rn satisfying
Ax� � 0�.

2. RA � the range of A � This is the set of all vectors b� � Rm satisfying Ax� � b�.
for some x� � Rn.

Note that the null space of A always contains the zero vector (at least) but there may be
nonzero vectors in the null space as well. Similarly the range of A also contains the zero
vector (since A0� � 0� ) but unless A is composed of all zeroes, it will contain vectors besides
the zero vector.

Clearly the system Ax� � b� has a solution (i.e., a solution exists) if and only if b� belongs
to the range of A. This is just the definition of the range, it is the set of b��s for which the
system Ax� � b� has a solution. The best possible situation for existence of solutions is when
the range of A is as large as possible, namely if it is the whole space. In that case Ax� � b�

has a solution for all choices of b�.
The system has at most one solution (i.e., any solution is unique) if and only if the null

space of A contains only the zero vector. To see this, suppose there are two solutions for
the system, e.g., Ax� � b� and Az� � b� . Then

Ax� � Az� � b� � b� � 0�.

That is,

Ax� � Az� � A�x� � z�� � 0�, or �x� � z�� � NA

But if the null space of A contains only the zero vector, then x� � z� � 0�, which is to say, x� � z�,
and the two solutions must be equal (so there is really only one solution). Then the best
possible situation for uniqueness of solutions is when the null space of A is a small as
possible; i.e., when NA contains only the zero vector.

2.2 Linear independence and dimension
In order to determine whether NA and RA contain vectors besides the zero vector, it will be
helpful to define the notion of dimension for these subspaces. In order to define dimension,
we will first have to define the term linearly independent.

Definition a collection of vectors X�1, X�2,� , X�N is said to be linearly independent if the
following two statements are equivalent:

1� C1X�1 � C2X�2 ���CNX�N � 0�

2� C1 � C2 � � � CN � 0

A set of vectors that is not linearly independent is said to be linearly dependent.

A set of vectors is linearly independent if none of them can be written as a linear
combination of the others. For example, the vectors
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e�1 �

1

0

0

0

, e�2 �

0

1

0

0

e�3 �

0

0

1

0

e�4 �

0

0

0

1

are easily seen to be a linearly independent set in R4. Note that any vector in R4 can be
written as a linear combination of the e�k

� s. For example, if x�� � �a, b, c, d�, then
x� � ae�1 � be�2 � ce�3 � de�4. We say that the vectors e�k, k � 1, 2, 3, 4 are a spanning set for R4.
Similarly, if M denotes the subspace of R4 whose first entry is a zero, then e�2, e�3, e�4 form a
spanning set for M. In general, a set of vectors is a spanning set for a subspace M if any
vector in M can be expressed as some linear combination of the vectors in the spanning
set.

Now we can define the dimension of a subspace M to be the maximum number of
linearly independent vectors in the subspace. It is clear that the dimension of a subspace of
vectors from Rn cannot exceed n. Note that if M has dimension k, then a spanning set for M
must contain at least k vectors. A spanning set for M that contains exactly k vectors is called
a basis for M. A basis is a linearly independent spanning set and, as such, contains the
minimal number of elements needed to span M; It is a fact (not proved here) that every
basis of a subspace M contains the same number of elements and this number is the
dimension of M.

With regard to the question of existence of solutions for Ax� � b�, (where A is an m by n
matrix) the system is solvable for any choice of b� if the range of A equals all of Rn and this
happens if the dimension of RA equals n. With regard to the question of uniqueness, the
solution is unique, (if it exists) when NA contains only the zero vector, i.e., when the
dimension of NA equals zero. That is,

� Ax� � b� has at least one solution for every b� � Rn if dim�RA� � n

� Ax� � b� has at most one solution for every b� � Rn if dim�NA� � 0

2.3 Rank of a matrix
In order to determine the dimensions of RA and NA, we have to now define two more
subspaces associated with A.

the row space of A RS�A� � span R�1, R�2, . . . , R�m

and the column space of A CS�A� � span C� 1, C� 2, . . . , C� n

where R�1, R�2, . . . , R�m � the m rows of A and C� 1, C� 2, . . . , C� n � the n columns of A.

Recall that if M � span X�1, X�2, . . . , X�n then M consists of all possible linear combinations of

X�1, X�2, . . . , X�n. If the vectors X�1, X�2, . . . , X�n are linearly independent, then they form a basis for
M and M has dimension equal to n. In the case of RS�A�, the rows of A might not be
independent so the dimension of the row space is less than or equal to m. The dimension of
the row space of A is called the "row rank of A". Similarly the dimension of the column
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space is less than or equal to n and we call the dimension of the column space of A the
"column rank of A".

2.4 Existence and Uniqueness for Ax� � b�

Note the following facts about the row space and column space of A.
Since

Ax� �

R�1 � x�

R�2 � x�

�

R�n � x�

it follows that:
x� � NA if and only if R�1 � x� � R�2 � x� � � � R�n � x� � 0,

i.e., if and only if x� is orthogonal to all the rows of A

Likewise, since Ax� � x1C� 1 � x2C� 2 � � � xnC� n

it follows that
Ax� � b� if and only if b� � x1C� 1 � x2C� 2 � � � xnC� n

i.e., if and only if b� � CS�A� � span C� 1, C� 2, . . . , C� n

These two observations can be stated more concisely as:

1. NA � the orthogonal complement of RS�A� �: �RS�A���

2. RA � CS�A�

Here, M� denotes the the orthogonal complement of subspace M and consists of all
vectors which are orthogonal to every vector in M. It is always the case that M� is a
subspace and the only vector that belongs to both M and M� is the zero vector.

The importance of these two observations increases when they are combined with the
following two facts. The proofs of these results can be found in the appendix to this chapter.

Theorem 1- Let A be any m by n matrix. Then the column rank of A (number of linearly
independent columns) equals the row rank of A (number of linearly independent rows);
i.e., dim CS�A� � dim RS�A�.

Since the row rank and column rank of A are equal, we will refer simply to the rank of A.

Theorem 2- If M is any subspace in Rn then dim M � dim M� � n.

Corollary Let A be any m � n matrix. Then dim RA � dim NA � n

The corollary to theorem 2 is an existence and uniqueness theorem for the system Ax� � b�.
It asserts that dim NA � n � r, where r � rank A. Then if we can determine the rank of A, the
questions of existence and uniqueness can be quickly answered. In particular, in the case of
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a square matrix A, we have m � n so if r � n the system has a unique solution for every
choice of b�. On the other hand, if r � n, then the solution is not unique and no solution
exists for some choices of b�. It remains to see how to determine the rank of A.

2.5 Echelon form and the rank of A
We will now show how to compute the rank of a matrix A. Beginning with the matrix A, we
perform a series of row operations on A to reduce it to echelon form. The row
operations consist of:
1. multiply row i by a nonzero scalar �: �R i

2. multiply row i by a nonzero scalar, �, and add it to row j : R j � �R i

3. interchange rows i and j : R ij

The notations, �R i, R j � �R i and R ij are the symbols we will use for the row operations used
to reduce a matrix to echelon form. A matrix is said to be in echelon form if

� all trivial rows (rows composed of all zeroes) lie below all nontrivial rows (rows that
have at least one nonzero entry)

� the first nonzero entry in any row lies to the right of the first nonzero entry in the row
above

These conditions imply that all entries below the matrix diagonal are zeroes. Then the row
operations are generally selected to produce zeroes below the diagonal as efficiently as
possible. e.g., here we begin with a matrix A and employ 5 row operations that reduce A to
an echelon form matrix B:

A �

2 �2 �4

�3 �2 6

2 �1 2


 1
2 R1 


1 �1 �2

�3 �2 6

2 �1 2

R2 � 3R1 


1 �1 �2

0 �5 0

2 �1 2


 R3 � 2R1 


1 �1 �2

0 �5 0

0 1 6

�1
5 R2 


1 �1 �2

0 1 0

0 1 6


 R3 � R2 


1 �1 �2

0 1 0

0 0 6

� B (echelon form)

Two matrices are said to be row equivalent if one is obtained from the other by a
sequence of row operations. For example, the matrices A and B above are row equivalent.
The matrix B above is in echelon form; i.e., in each row, the first nonzero entry lies to the
right of the first nonzero entry in the row above and in each column, all entries below the
diagonal entry are zeroes Now we can define the rank of A to be the number of nontrivial
rows in a row equivalent matrix that is in echelon form. Thus the rank of the matrix A in the
example above is 3 since the row equivalent matrix B has 3 nontrivial rows. In the following
example,
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A �

�1 2 1

0 1 1

3 �1 2

, , 
 row operations 
: B �

�1 2 1

0 1 1

0 0 0

,echelon form

we see that A has rank equal to 2 since A is row equivalent to B whose rank is clearly equal
to two. Evidently, the rank of an n by n matrix can equal any number between zero (all
entries of A would have to be zeroes) and n ( the rows of A are a linearly independent set of
vectors).

Theorems 1 and 2 of the previous section assert that, .
� dim�RS�A�� � dim�NA � � n

� dim�RS�A�� � dim�CS�A�� � dim�RA �

These now can be expressed in the form:

� dim�NA � � n � r
� r � rank A � dim�RA �

It is evident that if the n by n matrix A has rank equal to n, then dim�RA � � n and RA � Rn. In
this case Ax� � b� is solvable for any b� � Rn. It is also evident that if rank�A� � n, then
dim�NA � � 0, which is to say NA contains only the zero vector and the solution to Ax� � b� is
unique.

An alternative means for determining whether the matrix A has rank equal to n is to
compute the determinant of A. Computing the determinant of an n by n matrix A when n is
large is impractical so this approach is more theoretical than practical. At any rate, it can be
shown that the determinant of A is different from zero if and only if the rank of A equals n.
Then, at least in cases of small n, the determinant computation can be used to decide the
rank of A.

These observations lead to the fundamental result regarding the first problem of linear
algebra:

Theorem 3- The following are equivalent statements about the n by n matrix, A :

1. Ax� � b� is uniquely solvable for every b� � Rn

2. rank�A� � n
3. det�A� � 0
4. there exists a unique n by n matrix, A�1 such that AA�1 � A�1A � I

Exercises
For each of the following matrices, reduce to row echelon form, determine the rank and tell
whether the problem Ax� � b� is uniquely solvable for every b� � Rn :
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1. A �

3 0 1

3 1 �1

2 0 �1

2. A �

1 0 �2

�3 1 1

�3 �3 �2

3. A �

3 �1 �1

�3 2 3

�1 �2 1

4. A �

�2 1 2

�2 2 2

3 0 �3

5. A �

�3 2 1

1 1 �2

2 �1 �1

6. A �

�1 2 1

0 1 1

3 �1 2

Theorem 3 asserts that when the rank of the n by n matrix A is equal to n, the system
Ax� � b� has a unique solution for every b� � Rn. The following theorem covers the case when
the rank of A is less than n. Here we make use of the n by n � 1 augmented matrix A|b� ,

obtained by joining the column vector b� to the matrix A.

Theorem 4- Suppose the n by n matrix, A has rank r � n.

1. If rank�A� � rank A|b� , then Ax� � b� has no solution.

2. If rank�A� � rank A|b� � r � n, then Ax� � b� has an infinite family of solutions. The
general solution in this case can be written as

x� � x�p � C1x�1 � � � Cqx�q

where q � n � r, x�p is any solution of Ax� � b�, C1, . . . , Cq are arbitrary constants and
x�1, . . . , x�q are a basis for NA. The general solution is a q-parameter family of
solutions where C1, . . . , Cq are the parameters and x� is said to be in parametric
form.

We will illustrate these two theorems with some examples:

Examples
Solve the following systems to find the unique solution if one exists. If the solution is not
unique, find the general solution in parametric form. If no solution exists indicate how you
know this.

1.
x2 � 4x3 � 6

x1 � 2x2 � x3 � 2

2x1 � x2 � 2x3 � 4
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Form the augmented matrix, A|b� :

0 1 �4 6

1 2 �1 2

2 1 �2 4

Use row operations to reduce the augmented matrix to the following "reduced" echelon
form:

1 0 0 1
2

0 1 0 0

0 0 1 � 3
2

Clearly rank�A� � rank A|b� � 3, so a unique solution exists and with the augmented matrix
in this reduced echelon form, we see that the solution is x1 � 1/2, x2 � 0, and x3 � �3/2.

2.

x1 � x2 � 2x3 � 2

3x1 � x2 � x3 � 3

5x1 � x2 � 5x3 � 7

Form the augmented matrix, A|b� :

1 1 �2 2

3 �1 �1 3

5 1 �5 7

Use row operations to reduce the augmented matrix to the following "reduced" echelon
form:

1 0 � 3
4

5
4

0 1 � 5
4

3
4

0 0 0 0

Here rank�A� � rank A|b� � 2 � 3, so solutions exist but are not unique. To express the
solution in parametric form, we write
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x� �

5
4 � 3

4 x3

3
4 � 5

4 x3

x3

�

5
4

3
4

0

�

3
4 x3

5
4 x3

x3

�

5
4

3
4

0

� x3

3
4

5
4

1

� x�p � C x�H

Here x�p � 5
4 , 3

4 , 0
�

is a particular solution of Ax� � b�, and x�H � 3
4 , 5

4 , 1
�

is a basis for
the (one dimensional) null space of A. Note that since any multiple of a vector in NA is also
in NA, we could also use �3, 5, 4� as a basis for NA.

3.
2x1 � 2x2 � x3 � �1

x1 � x2 � x3 � 1

3x3 � �1

Form the augmented matrix, A|b� :

2 �2 1 �1

1 �1 �1 1

0 0 3 �1

and use row operations to reduce it to row echelon form:

1 �1 0 0

0 0 1 0

0 0 0 1

Here the rank of A equals two, while the rank of A|b� is three. Then it follows from theorem
4 that there is no solution to this system since the equations are inconsistent.

4. Find a basis for NA

i� A �

1 0 �5

0 1 2

0 0 0

ii� A �
1 1 0 4

0 0 1 2

Since the rank of this 3 by 3 matrix is clearly equal to 2, it follows from theorem 2 that
dim NA � 3 � 2 � 1. Then we are looking for the general solution of Ax� � 0� and this means
x� � �x1, x2, x3 �� where

x1 � 5x3 � 0

x2 � 2x3 � 0.

12



Then x� � �5x3,�2x3, x3 �� � x3�5,�2, 1�� and it is evident that all x� � NA are multiples of
�5,�2, 1��, and this vector forms a basis for NA.

In the case of the 2 by 4 matrix, the rank is apparently 2 so theorem 2 implies
dim NA � 4 � 2 � 2. If Ax� � 0�, then

x1 � x2 � 4x4 � 0

x3 � 2x4 � 0.

Now we can solve these equations for two of the x i
�s in terms of the other two and it doesn’t

matter which two we solve for. If we solve for x1 and x3 in terms of x2 and x4, then
x� � ��x2 � 4x4, x2,�2x4, x4 ��

� x2��1, 1, 0, 0�� � x4��4, 0,�2, 1��.

We conclude that ��1, 1, 0, 0�� and ��4, 0,�2, 1�� are a basis for NA. Alternatively, if we
decided to solve for x1 and x4 in terms of x2 and x3, then we would find,

x4 � � 1
2

x3 and x1 � �x2 � 2x3,

so x� � �x2 � 2x3, x2, x3,� 1
2

x3
�

.

Then the general solution of Ax� � 0� can be written x� � x2��1, 1, 0, 0�� � x3 2, 0, 1,� 1
2

�
. In

this case the basis for NA consists of ��1, 1, 0, 0�� and 2, 0, 1,� 1
2

�
, which is seen to be

essentially the same as the previous basis.

It is worth observing that the general solution for the linear system, Ax� � b�, has the same
structure as the general solution to a linear ODE L�y�t�� � f�t�. Recall that the general
solution for the linear ODE is equal to yG�t� � yp�t� � yH�t�, where yp is a particular solution
of the inhomgeneous ODE and yH denotes the general homogeneous solution. If the m by n
matrix A has a null space of dimension q, then the general homogeneous solution for A is of
the form x�H � C1x�1 � � � Cqx�q and the general solution of Ax� � b� is x� � x�p � x�H, for any
particular solution, x�p, of Ax� � b�.

Exercises
In each of the following, solve Ax � b. Express the solution in the form x � xp � xH where xp

is a particular solution and AxH � 0. Express xH in parametric form.

1. A �

2 �2 1

1 �1 �1

0 0 3

b �

�1

1

�3

2. A �

2 0 0 �4

�1 1 �1 1

�1 1 �1 1

b �

0

1

1
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3. A �

2 �2 1

1 �1 �1

0 0 3

b �

�1

1

�3

4. A �

5 �2 �5

�3 0 3

0 �3 0

b �

2

0

3

5. A �

�3 3 3 0

�4 2 4 �2

1 0 �1 1

b �

3

4

�1

6. A �

2 0 0 �4

�1 1 �1 1

�1 1 �1 1

b �

0

1

1

7. A �

1 0 2 �1

2 2 0 1

1 1 1 1

b �

1

0

1

8. A �

1 1 0 1 1

2 �2 1 0 2

3 0 1 1 2

b �

2

3

�2

Find a basis for the null space of A :

9. A �

1 1 1

�5 �2 �5

1 0 1

10. A �

2 �1 0 1

�1 1 1 0

1 1 3 2

�3 3 3 0

11. Does span

1

�4

4

,

0

�2

1

,

1

�2

3

contain

1

1

1

or

1

0

2

?
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12. Does span

1

�4

4

,

0

�2

1

contain

�3

2

7

?
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3. The Second Problem of Linear Algebra: Ax� � �x�
Let A denote an n by n matrix. It is clear that for any choice of the scalar, �, the equation

Ax� � �x�, has the solution x� � 0�. However, if � is such that Ax� � �x�, has nontrivial solutions,
x� � 0�, then we say that � is an eigenvalue for A, and the corresponding nontrivial solutions
are said to be eigenvectors for A corresponding to the eigenvalue �. Note that if
x� � 0�, and Ax� � �x�, then for every nonzero scalar �, A��x�� � ���x��, so any nonzero scalar
multiple of an eigenvector for A corresponding to the eigenvalue � is again an eigenvector
for A corresponding to the eigenvalue �. The problem of finding the eigenvalues and
eigenvectors for an n by n matrix A is the second problem of linear algebra.

3.1 Finding Eigenvalues and Eigenvectors of a Matrix
If x� is an eigenvector for A corresponding to the eigenvalue �, then x� � 0� and
Ax� � �x� � �A � �I�x� � 0�; i.e, x� � NA��I �: N� and x� � 0�. Then dim N� � 0 and the results of
the previous sections imply that the rank of A � �I is less than n. In this case, it is known
from theorem 2.2 that the determinant of A � �I must be zero. It is also well known that
since A is n by n, det�A � �I� is a polynomial in � of degree n. Then we have the following
equivalent ways of characterizing eigenvalues and eigenvectors,

Theorem 1. � is an eigenvalue for A if:
1. Ax� � �x�, for some x� � 0�,
2. det�A � �I� � Pn��� � 0
3. rank�A � �I � � n
4. dim N� � 0

Then x� is an eigenvector for A corresponding to the eigenvalue � if:
1. x� � 0�, and Ax� � �x�,
2. x� � NA��I � N�

Examples

1. Consider the matrix A �
2 1

1 2
, Then

det�A � �I� � det
2 � � 1

1 2 � �

� 3 � 4� � �2 � P2���

and the eigenvalues of A are the roots of the equation, P2��� � 0; i. e. , �1 � 1, �2 � 3.
Next, we find the eigenvectors of A. The eigenvector corresponding to � � 1 lies in the

null space of

�A � �I�|��1 � �A � I� �
1 1

1 1

Since
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1 1

1 1

x1

x2

� 0�

if and only if x1 � x2 � 0; i.e., x� � NA�I if and only if x2 � �x1. Then x� � �x1,�x1 �� � x1�1,�1�
which is to say, x� � NA�I if and only if x� is a multiple of E�1 � �1,�1��.Then all eigenvectors of
A associated with �1 are multiples of E�1.

The eigenvector corresponding to � � 3 lies in the null space of

�A � �I�|��3 � �A � 3I� �
�1 1

1 �1

For the null space of �A � 3I� we find in the same way that, x� � NA�3I, if and only if x� is a
multiple of E�2 � �1, 1��.

Note that both �1 � 1, �2 � 3 are real numbers and E�1 � E�2 � 0. This is not accidental.
We will show that for any real symmetric matrix, the eigenvalues are real and the
eigenvectors associated with distinct eigenvalues are orthogonal.

First, however, we consider another example. For the matrix A �
0 2

�2 0
, the

eigenvalues are found to be : �1 � 2i, �2 � �2i and the eigenvectors are :

E�1 �
�i

1
associated with � � 2i,

E�2 �
i

1
associated with � � �2i

In this case note that E�1 � E�1 � E�2 � E�2 � 0 but E�1 � E�2 � 0. This is bad. Neither E�1 nor E�2 is
the zero vector but each appears to have zero length. The problem here lies in the definition
of the inner product. We have to modify the previous definition to account for vectors having
complex entries. The new definition for the inner product is,

x� � z� � x1z�1 � � � xnz�n

where z�k � the complex conjugate of zk.

Recall that the complex conjugate of the complex number zk � �k � i�k is defined
as z�k � �k � i�k. With this definition, E�1 � E�1 � 0, E�2 � E�2 � 0 and E�1 � E�2 � 0. In addition,
when the vectors involved both have only real components, then the new definition reduces
to the old one. For the new definition, we have the following properties,

x� � z� � z� � x�

and ��x�� � z� � ��x� � z��

hence, for the complex inner product, scalar multiplication has the following property,

x� � ��z�� � �� �x� � z��.

Now we can show:

Theorem 2- (Spectral Theorem for Symmetric Matrices) Suppose A is an n by n symmetric
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real matrix. Then :

1. the eigenvalues of A are all real.
2. eigenvectors associated with distinct eigenvalues of A are orthogonal
3. A has n mutually orthogonal eigenvectors E�1,�E�n which form an orthogonal

basis for Rn.

Proof of 1) and 2)- For any matrix A (symmetric or not) and all vectors x�, z�

�Ax�� � z� � x� � �A� z��.

If A is symmetric (i.e., A � A�� this becomes,

�Ax�� � z� � x� � �A z��.

If Ax� � �x� then �Ax�� � x� � x� � �A x�� becomes ��x�� � x� � x� � �� x��. Then by the scalar
multiplication property of the complex inner product,

��x� � x�� � �� �x� � x��.

Finally, since x� is an eigenvector, x� � x� � 0 so � � �� , which is to say, any eigenvalue of A
is real.

To show the second assertion of this theorem, suppose

Ax� � �x� and Az� � � z�, � � �.

Then �Ax�� � z� � x� � �A z�� or ��x�� � z� � x� � �� z��. Since �,� are eigenvalues of A, they are both
real so that

��x� � z�� � ��x� � z��

or �� � �� �x� � z�� � 0

Finally, since � � �, it follows that �x� � z�� � 0.�

Corollary If A is skew symmetric ( A � �A��, then the eigenvalues occur in complex
conjugate pairs and assertions 2 and 3 of the theorem hold.

The meaning of 3 is that if x� is an arbitrary vector in Rn then we can find unique
constants �1,� ,�n such that

x� � �1E�1 ����nE�n.

In fact, the ��s can easily be found by using the orthogonality of the eigenvectors:
for each k, 1 � k � n,

x� � E� k � �1E�1 ����nE�n � E� k

� �1E�1 � E� k ����nE�n � E� k

� �kE� k � E� k

Here, we used the fact that E� j � E� k � 0 if j � k.

Since the E� k
� s are eigenvectors, E� k � E� k � 0 so that

�k �
x� � E� k

E� k � E� k

for each k, 1 � k � n.
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The fact that the eigenvectors of A form a basis for Rn is very useful in solving systems of
linear constant coefficient differential equations. The following result is also useful,

Theorem 3 Suppose A is an n by n real matrix having n distinct, real eigenvalues. Then the
corresponding n eigenvectors are linearly independent (in general not orthogonal).

Since the eigenvectors in this case are linearly independent, they form a basis for Rn, but
since they are not, in general, orthogonal, finding scalars �1,� ,�n such that

x� � �1E�1 ����nE�n.

requires solving the system of equations, �E��� � x�, where �E� is the matrix whose columns
are the eigenvectors of A, and �� denotes the vector whose entries are the coefficients
�1,� ,�n.

Examples

Find the eigenvalues and eigenvectors for the following matrices:

1. A �

1 3 0

3 1 0

0 0 4

,

Here

det�A � �I� � �1 � ��2�4 � �� � 9�4 � ��

� �4 � ���1 � 2� � �2 � 9�

� �4 � ����2 � 2� � 8�

� �4 � ��2�� � 2�

and it follows that the eigenvalues are � � 4, 4,�2. We say in this case that � � 4 has
algebraic multiplicity 2 and � � �2 has algebraic multiplicity 1.

To find the eigenvectors associated with � � 4, we must find a basis for the null space
of A � 4I. Now,

A � 4I �

�3 3 0

3 �3 0

0 0 0

and we see that x� � �x1, x2, x3 �� � N4 if �3x1 � 3x2 � 0; i.e., if
x� � �x1, x1, x3 �� � x1�1, 1, 0�� � x3�0, 0, 1��. Then

E�1 �

0

0

1

, E�2 �

1

1

0

are a basis for N4. Since the dimension of N4 is 2, we say � � 4 has geometric multiplicity
of 2.

The eigenvector associated with � � �2 (recall that the eigenvectors of A form an
orthogonal basis for R3 and there are already two vectors associated with � � 4 so there
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can only be one more eigenvector) is in the null space of

A � 2I �

3 3 0

3 3 0

0 0 6

.

Then x� � �x1, x2, x3 �� � N�2 if 3x1 � 3x2 � 0 and x3 � 0; i.e., if x� � �x1,�x1, 0�� � x1�1,�1, 0��.
Evidently, � � �2 has geometric multiplicity equal to one and the associated eigenvector is

E�3 �

�1

1

0

Clearly the eigenvalues of the symmetric matrix A are real and the eigenvectors
E�1, E�2, E�3 form an orthogonal basis for R3 as predicted by theorem 2.

2. A �

1 3 0

�3 1 0

0 0 4

,

In this example,
det�A � �I� � �1 � ��2�4 � �� � 9�4 � ��

� �4 � ���1 � 2� � �2 � 9�

� �4 � ����2 � 2� � 10�

� �4 � ���� � 1 � 3i��� � 1 � 3i�

and we see that this skew symmetric matrix has one real eigenvalue and a conjugate pair of
complex eigenvalues as asserted in the corollary to theorem 2. A matrix with real entries
can only have complex eigenvalues that occur in conjugate pairs. Thus if � � i� is an
eigenvalue of the matrix A, then � � i� must also be an eigenvalue for A.

To find the eigenvectors associated with � � 4, we proceed as in the previous example
to find a basis for the null space of A � 4I. Now,

A � 4I �

�3 3 0

�3 �3 0

0 0 0

and we see that x� � �x1, x2, x3 �� � N4 if x1 � 0, and x2 � 0, with no restriction placed on x3;
i.e.,x� � N4 if x� � �0, 0, x3 �� � x3�0, 0, 1��. Then

E�1 �

0

0

1

is a basis for N4.
To find the other eigenvectors, consider first � � 1 � 3i,
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A � �1 � 3i�I �

3i 3 0

�3 3i 0

0 0 4

.

Then x� � �x1, x2, x3 �� � N1�3i if ix1 � x2 � 0 and x3 � 0; i.e., x� � �x1,�ix1, 0�� � x1�1,�i, 0��.
Notice that we used only the first equation in the system A � �1 � 3i�I � 0 in order to solve
for x1 and x2. This is because the first and second equations in the system must be
dependent so the second equation contains the same information as the first. Thus only the
first equation need be considered. Furthermore, since the eigenvector E�2 associated with
� � 1 � 3i is �1,�i, 0��, the eigenvector associated with the conjugate eigenvalue, � � 1 � 3i,
must necessarily be the conjugate of E�2. That is, E�3 � �1, i, 0�� is the eigenvector associated
with � � 1 � 3i. Note that the eigenvectors E�1, E�2, E�3 of the skew symmetric matrix A
form an orthogonal basis for R3 as predicted by the corollary to theorem 2. Each of the
eigenvalues in this example has algebraic and geometric multiplicity equal to one.

3. A �

1 3 0

0 �1 0

0 0 4

Since A has only zeroes below the diagonal, it is easy to see that
det�A � �I� � �� � 1��� � 1��� � 4� so the eigenvalues are just the diagonal entries in A,
� � 1,�1, 4. Then according to theorem 3, the eigenvectors will be linearly independent but
not necessarily orthogonal.

We have, in this example

A � I �

0 3 0

0 �2 0

0 0 3

from which we see that in the eigenvector associated with � � 1, E�1 � �x1, x2, x3 �� � N1 if
x3 � x2 � 0. Then E�1 � �x1, 0, 0�� � x1�1, , 0, 0��. Similarly,

A � I �

2 3 0

0 0 0

0 0 5

which implies that E�2 � �x1, x2, x3 �� � N�1 if x3 � 0 and 2x1 � 3x2 � 0. Then
E�2 � x2 � 3

2 , 1, 0
�
. Finally,

A � 4I �

�3 3 0

0 �5 0

0 0 0

which tells us that E�3 � �x1, x2, x3 �� � N4 if x1 � x2 � 0 and E�3 � x3�0, 0, 1��. Since the
eigenvectors we have found are determined only up to the multiplicative constants
x1, x2, and x3 we are free to choose any value we like for the constants. In particular, if we
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choose x1 � x3 � 1 and x2 � 2 then we have E�1 � �1, 0, 0��, E�2 � ��3, 2, 0�� and
E�3 � �0, 0, 1��. These eigenvectors are independent but not mutually orthogonal.

4. A �

1 3 0

0 1 0

0 0 4

Just as in the previous example, the eigenvalues of this matrix are easily found to be
� � 1, 1, 4 where now the eigenvalue � � 1 has algebraic multiplicity 2. The eigenvector for
� � 4 is the same as before but for � � 1 we have

A � I �

0 3 0

0 0 0

0 0 3

so the (single) eigenvector in this case is E�1 � �1, 0, 0��. Since there are not three distinct
eigenvalues, theorem 3 does not guarantee three eigenvectors. Here the geometric
multiplicity of � � 1 is just 1 which is less than the algebraic multiplicity. In general the
geometric multiplicity of an eigenvalue is less than or equal to its algebraic multiplicity.
When the geometric multiplicity of an eigenvalue is strictly less than its algebraic multiplicity,
the matrix will not have a full set of eigenvectors.

The examples here all involve matrices that are 3 by 3. In applications it will frequently
be necessary to find the eigenvalues and eigenvectors of matrices that are much larger.
Since this involves solving a polynomial equation of high degree, the analysis is usually
done by computer. For purposes of illustration here we have used the largest matrices
where we can easily find the eigenvalues and eigenvectors without resorting to computers.

Exercises
For each of the following matrices, find the eigenvalues and the eigenvectors.

1. A �
�1 2

2 �1
2. A �

1 2

�2 1
3. A �

3 2

0 3
.

4. A �
�2 1

1 �2
5. A �

1 1

2 2
.

6. A �

�2 1 0

1 �2 1

0 1 �2

7. A �

�1 1 0

1 �2 1

0 1 �1

.

8. A �

1 �1 4

3 2 �1

2 1 �1

9. A �

1 1 1

2 2 2

3 3 3
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10. A �

1 �1 4

0 2 �1

0 0 3

11. A �

1 0 4

0 2 0

0 0 1

12. A �

1 4 0

0 2 4

0 0 1

.

3.2 Discussion of Eigenvalues and Eigenvectors of a Matrix
Students often ask whether there is any physical significance for eigenvalues and
eigenvectors for a matrix A. The answer is, "it depends". For example, if A represents the
inertia tensor of a rigid body (the inertia tensor for a three dimensional solid is a 3 by 3
matrix) then the eigenvectors of A are the principal axes of rotation and the eigenvalues are
the associated moments of inertia of the rigid body. If you are not a student of rigid body
dynamics then this example is not very meaningful. There are examples from quantum
mechanics which provide interpretations of eigenvalues and eigenvectors but, again, unless
you are familiar with quantum mechanics, these examples are not enlightening.

As we will see in the next chapter, our interest in eigenvalues and eigenvectors arises in
connection with the solving of systems of linear ordinary differential equations of the form,

d
dt

x��t� � Ax��t�. If such a system is the result of modelling some sort of vibrational system
(these are nearly always represented schematically as a system of masses connected to
one another by springs), then the eigenvalues can usually be interpreted as the "natural
frequencies" of the system and the eigenvectors are the so called "mode shapes" that
correspond to these frequencies. The mode shapes describe the patterns of deflections
assumed by the masses in the system when it is oscillating at one of the natural
frequencies.

More generally, the eigenvalues and eigenvectors for a matrix A do not have a specific
physical meaning but they do have a mathematical interpretation. If A has n linearly
independent eigenvectors then these vectors form a natural basis in Rn for representing the
solution of the system d

dt
x��t� � Ax��t�. In fact, the solution of this system can be written in

the form

x��t� � e tAx��0�

but the meaning of this expression can only be interpreted through the use of the
eigenvalues and eigenvectors.

Appendix to Chapter Two

The following two theorems and the corollary are the central results bearing on the first
problem of linear algebra.

Theorem 1- Let A be any m by n matrix. Then the column rank of A (number of linearly
independent columns) equals the row rank of A (number of linearly independent rows);
i.e., dim CS�A� � dim RS�A�.

Since the row rank and column rank of A are equal, we will refer simply to the rank of A.

Proof- Suppose row rank of A � r and let x�1, . . . x�r denote a basis for RS�A�. Then the
vectors Ax�1, . . . , Ax�r all belong to the range of A, that is, to CS�A�. Now suppose
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C1Ax�1 �. . .�CrAx�r � 0�

Then

A�C1x�1 �. . .�Crx�r� � 0�

which implies that C1x�1 �. . .�Crx�r belongs to NA. But C1x�1 �. . .�Crx�r also belongs to RS�A�
which means C1x�1 �. . .�Crx�r belongs NA � NA

� . This means C1x�1 �. . .�Crx�r � 0�. Since
x�1, . . . x�r are a basis for RS�A�, they are linearly independent and this implies the constants
are all zero and it follows finally that the vectors Ax�1, . . . , Ax�r are linearly independent. This
proves that dim CS�A� � dim RS�A�. Since this holds for any matrix, it follows that it holds for
AT, so dim CS�AT� � dim RS�AT�. But CS�AT� � RS�A� and RS�AT� � CS�A� so this last result
means that dim RS�A� � dim CS�A�.Together these imply dim CS�A� � dim RS�A�.�

Theorem 2- Let A be any m � n matrix. Then dim RA � dim NA � n

Proof- Let dim NA � p and dim RA � q. Then we want to show that p � q � n. Let v�1, . . . , v�p

denote a basis for NA. Then we can q additional vectors to extend this basis to
�v�1, . . . , v�p, w� 1, . . . , w� q
 so as to get a basis for Rn. Then for an arbitrary x� in Rn we have

x� � C1v�1 �. . .�Cpv�p � D1w� 1 �. . .�Dqw� q

Then
Ax� � A�C1v�1 �. . .�Cpv�p � D1w� 1 �. . .�Dqw� q�

� 0� � A�D1w� 1 �. . .�Dqw� q�

� D1Aw� 1 �. . .�DqAw� q

Clearly, the vectors �Aw� 1, . . . , Aw� q
 span RA and it remains to show that they form a basis for
RA. (for this shows dim RA � q).Suppose then that

a1Aw� 1 �. . .�aqAw� q � 0�

Then

A�a1w� 1 �. . .�aqw� q� � 0�

which implies �a1w� 1 �. . .�aqw� q� � NA.But v�1, . . . , v�p is a basis for NA so there exist scalars
b1, . . . , bp such that

a1w� 1 �. . .�aqw� q � b1v�1 �. . .�bpv�p

But in this case a1w� 1 �. . .�aqw� q � b1v�1 �. . .�bpv�p � 0�, which means
a1 � a2 �. . .� aq � b1 �. . .� bp � 0 since �v�1, . . . , v�p, w� 1, . . . , w� q
 is a basis for Rn.Then it
follows that the vectors �Aw� 1, . . . , Aw� q
 are linearly independent and therefore form a basis
for RA.Then dim RA � q and p � q � n.�

Corollary- If M is any subspace in Rn then dim M � dim M� � n.
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Proof- If M is a subspace of Rn of dimension p, let �v�1, . . . , v�p
 denote a basis for M and let A
be a matrix whose rows are these vectors. Then NA � M�. Now theorem 1 implies
dim M � dim RA � p and theorem 2 implies dim M � dim M� � n.
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